Technical data & results

(Example results from inopor® technical report 04/2023)

Scouring	
Permeate flux	> 300 l/h
TSS	> 99,9 %
Operation temperature	up to 90°C
Temperature difference beween feed and permeate	5°C
ph value	will not be changed
Conductivity (µS/cm)	will not be changed

Dyeing	
Permeate flux	> 100 l/h
Dye rejection rate	> 98 %
Operation temperature	> 80 °C
ph value	will not be changed
Conductivity (µS/cm)	will not be changed

MicroTai pilot plant in operation

Membranes

Technical parameters

		Membrane material	Pore size	Cut-off	Porosi
	nioro	1100 nm			
			800 nm		
		600 nm		%	
	ofiltra or®	Microfiltration inopor® micro α-Al ⁵ O ³	400 nm		30 – 40 % Ao – 55 % Porosi
	Micr		200 nm		
			100 nm		
			70 nm		
Nanofiltration inopor® nano inopor® ultra	opor® ultra	30 nm	100 kDa		
		10 nm	20 kDa		
		5 nm	8.5 kDa		
	⊃.⊆	ZrO ₂	3 nm	2 kDa	
	tion	1.0 nm	750 Da	%	
	ofiltra oor® n	© TiO ₂	0.9 nm	450 Da	30 – 40 %
	Nan inop		LC1	200 Da	30

Ϊţ

Function of the ceramic membranes

Recovery of texturising water in textile industry with ceramic inopor® ultra filtration membranes

Initial situation

The discharge of scouring water causes significant increase in COD (chemical oxygen demand) of processed wastewater.

Objective of piloting

- Determine the level of filtration necessary to clean the scouring wastewater for reuse in the sourcing machine
- Test if the quality of the filtered scouring water is adequate for reuse in the scouring process

Results

High temperature permeate is reused on site which results in:

- Reduction of fresh water
- Energy saving
- Environment friendly production

Advantages of ceramic inopor® membranes

- High chemical resistance
- Bio inert (e.g. against bacteria)
- High thermal resistance
- Good steam sterilisation
- Back flushing possible, high compressive strength
- No material degradation
- Optimal regeneration
- High permeate flux rates
- Can be stored dry after cleaning
- High resistance against abrasive particles
- High durability

Applications in the textile industry

- Removal of spin finish and sizer
- Removal of dyeing agents
- Recycling of wastewater in the ATY process
- Separation of oil/water emulsions

We welcome your enquiries!

Contact

Rauschert Distribution GmbH Business unit inopor®

Industriestrasse 1 98669 Veilsdorf Germany

Phone: +49 (0)3685 685-257 Fax: +49 (0)3685 685-230 E-Mail: contact@inopor.com

www.inopor.com